

DATE	May 25, 2023	
No.	V-70284B-E	

N	lessr	٠.
10	COOL	

SPECIFICATION

	Semiconductor Pressure Sensor							
Model:	AL4 series (Differential Pressure Type)							
Project:								
Distributor:								
Reference:								

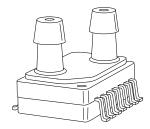
Yoshiyuki Uchiumi, Application Engineer Sensor Department, Electronic Components Division Electronic Components Business Unit Fujikura Ltd.

Fujikura Ltd.

Table of Contents

1.	General	
2.	Principle	
3.	Device Lineup	
4.	RoHS	
5.	Block Diagram and Pin Connections	3
6.	Device Name Code	
7.	Absolute Maximum Ratings	
8.	Environmental Specifications	
9.	Pressure Specifications	
10.	Electrical Characteristics	6
11.	Electrical Characteristics for I ² C or SPI Interface	
12.	I ² C or SPI Circuits (Reference)	-
13.	I ² C Digital Interface	8
14.	I ² C Communication Protocol	8
15.	SPI Digital Interface	9
16.	SPI Communication Protocol	9
17.	Output versus Input Pressure	10
18.	Transfer Function	10
19.	Device Marking	1
20.	Soldering	1
21.	Dimensions and Weights	1
22.	Ordering Information	12
23.	Tape & Reel Information	12
24.	Handling Notes	12
25.	Notes	12
Appe	endix: Dimension Drawing	13
۵	.772-006 ALVDR	1:

Table shown below is revision records of this specification


2	May 25, 2023	Y. Uchiumi	Typo corrected	В
1	Dec. 15, 2020	Y. Uchiumi	Typo corrected	Α
Est.	Jan. 9, 2020	Y. Uchiumi	Issued	
	Date	Name	Comment	Mark

1. General

This document describes the specifications of the AL4 pressure sensors for differential pressure type.

2. Principle

Fujikura pressure sensor is composed of a silicon piezo-resistive pressure sensing chip and a signal conditioning integrated circuit. The low-level signal from the sensing chip is amplified, temperature compensated, calibrated, and finally converted to digital data that is proportional to the applied pressure.

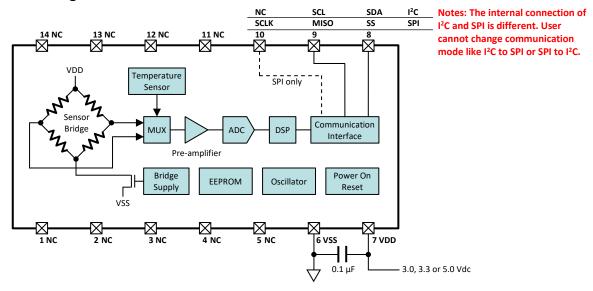
3. Device Lineup

This device has the following lineup.

	Pressure	Supply		Pressure Range									
Model	Туре	Voltage	Accuracy	-10	-7	-4	-2	-1 0	+1	+2	+4	+7	+10 kPa
	Туре	voitage		(-100)	(-70)	(-40)	(-20)	(-10)	(+10)	(+20)	(+40)	(+70)	(+100 cmH ₂ 0)
					T	T	T				T	T	T
								001K	(D)				
		5.0 Vdc						0021	(D				i i
AL4	Differential	3.3 Vdc	±1.0%FS					004	'n				
, . <u></u> .	2	3.0 Vdc					_	0041		_			
		5.0 vuc	A					007k	D				
				i				\Box			1		_i
								010K	D				

Features

- ✓ Digital output
- ✓ Low pressure
- ✓ High proof pressure
- ✓ Moisture sensitivity level (MSL) 1
- ✓ Low power consumption
- ✓ High accuracy
- ✓ Modification available

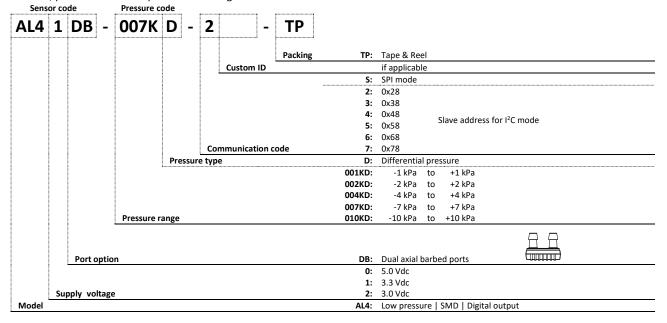

Applications

- ✓ Battery-operated devices
- ✓ Medical devices
- ✓ Industrial pneumatic devices
- ✓ Consumer devices

4. RoHS

This device is compliant with the Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS).

5. Block Diagram and Pin Connections


Pin Assignment	Pi	n No.	Pin Name	I/O	Туре	Function		
	1		NC	-	-	Non-connection	*3	
	2		NC	-	-	Non-connection	*3	
	3		NC	-	-	Non-connection	*3	
	4		NC	-	-	Non-connection	*3	
	5		NC	-	-	Non-connection	*3	
14 8 日日日日日	6		VSS	-	-	Common voltage connection	**	
	7		VDD	-	-	Power supply connection	* _	
		I ² C	SDA	I/O	Digital	Serial bidirectional data	*	
	8	SPI	SS	I	Digital	Slave select	*2	
		I ² C	SCL	I	Digital	Serial clock input	*	
	9	SPI	MISO	0	Digital	Master-In-Slave-Out		
/ 1 7	10	I ² C	NC	-	-	Non-connection	*:	
Index	10	SPI	SCLK	I	Digital	Serial clock input		
	11		NC	-	-	Non-connection	*3	
	12		NC	-	-	Non-connection	*3	
	13		NC	-	-	Non-connection	*3	
	14		NC	-	-	Non-connection	*3	

Notes:

- *1) Put a $0.1\mu F$ capacitor between VDD Pin 7 and VSS.
- *2) I²C or SPI is factory setting. User cannot change communication mode.
- *3) NC pins must be open.

6. Device Name Code

The device name code is consisted of Sensor code, Pressure code, Slave address code and Packing. For the exact ordering device number, please refer to Chapter 22 Ordering Information.

Pressure Range Conversion (Reference)

Pressure Code	kPa	mbar	cmH ₂ O	inchH ₂ O	psi	mmHg
001KD	-1 - +1	-10 - +10	-10.1972 - +10.1972	-4.01865 - +4.01865	-0.145038 - +0.145038	-7.50062 - +7.50062
002KD	-2 - +2	-20 - +20	-20.3943 - +20.3943	-8.03729 - +8.03729	-0.290075 - +0.290075	-15.0012 - +15.0012
004KD	-4 - +4	-40 - +40	-40.7886 - +40.7886	-16.0746 - +16.0746	-0.580151 - +0.580151	-30.0025 - +30.0025
007KD	-7 - +7	-70 - +70	-71.3801 - +71.3801	-28.1305 - +28.1305	-1.01526 - +1.01526	-52.5043 - +52.5043
010KD	-10 - +10	-100 - +100	-101.972 - +101.972	-40.1865 - +40.1865	-1.45038 - +1.45038	-75.0062 - +75.0062

Note:

7. Absolute Maximum Ratings

Item	Condition	Symbol	Rat	Unit		
item	Condition	Зуппоп	Min.	Max.	Offic	
Supply Voltage		VDD _{max}	-0.3	6	Vdc	
Voltage at Digital I/O pins		V_{diomax}	-0.3	VDD+0.3	Vdc	
Operating Temperature			-40	+85	°C	
Storage Temperature			-40	+85	°C	

Notes:

8. Environmental Specifications

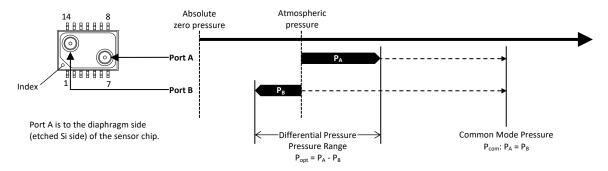
ltom	Condition	Symbol		Lloit			
Item			Min.	Тур.	Max.	Unit	
Operating Humidity	Non-condensing, +65°C		-	-	95	%RH	*1, 2
Storage Humidity	Non-condensing, +65°C		-	-	95	%RH	*1, 2

Notes:

*1) Do not wet the device with dew.

^{*1)} The device is calibrated based on the unit of "kPa". Other converted pressure values are for reference.

^{*1)} Absolute maximum ratings are the limits that the device will withstand without damage.


^{*2)} If the device is operated or storage at above +65°C in 95%RH, accuracy of the output is subject to be out of the specifications.

9. Pressure Specifications

Type of Pressure	Differential pressure	*1
Pressure Media	Non-corrosive gases for wetted materials	*2, 3

Notes:

- *1) Differential pressure is defined as the difference between the pressure applied to Port A and that to Port B. See the figure below.
- *2) Wetted materials are PPS resin, silicone resin, silicon, gold, Cu alloy and silver.
- *3) Ensure the pressure media contains no particulates. The device is not compatible with liquids.

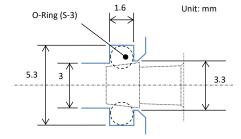
Pressure Table

Pressure	Pressure \ Item Pressure Range		Range *1	Proof Pressure *2	Burst Pressure *3	Common Mode Pressure *4	Lloit
Code	Symbol	Min. P _{opt}	Max. P _{opt}	P _{max}	P _{burst}	P _{com}	Unit
001k	(D	-1	+1	+100	+100	+100	kPa
002k	(D	-2	+2	+100	+100	+100	kPa
004KD		-4	+4	+100	+100	+100	kPa
007k	(D	-7	+7	+100	+100	+100	kPa
010KD		-10	+10	+100	+100	+100	kPa

Notes:

- *1) In Pressure Range(Popt), the output is proportional to difference between the pressure applied to Port A and Port B, meeting the specified accuracy.
- *2) Proof Pressure(P_{max}) is defined as maximum applied pressure to the device without damage.
- *3) The device will be damaged, if applied pressure is beyond Burst Pressure(P_{burst}).
- *4) Common Mode Pressure is defined as maximum applied pressure to Port A and B simultaneously.

Pressure Port Connection


Recommended Tube (Reference)

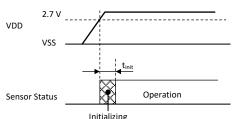
Flexible tubing is recommended. The following tubing is for reference. Please select appropriate tubing considering material, Durometer hardness and maximum pressure. Manifold connection can also be available with O-ring or sealing fixtures.

Unit	I.D.	O.D.	Wall thickness		
inch	3/32	7/32	1/16		
mm	2	4	1		

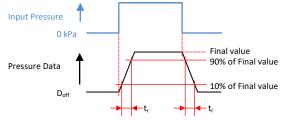
Manifold Connection (Reference)

Manifold connection can also be available with O-ring or sealing fixtures. There are parting lines on the surface of the pressure port at the base side. Top part of the pressure port (barbed part) is recommended for sealing with fixtures.

10. Electrical Characteristics


Ambient temperature T_a=25°C

	ltem	Condition		Cumbal		Rating	Unit		
	item	'	Condition	Symbol	Min.	Тур.	Max.	Unit	
			AL40DB		4.75	5	5.25		
Æ	Supply Voltage	Sensor Code	AL41DB	VDD	3.135	3.3	3.465	Vdc	*1
			AL42DB		2.85	3.0	3.15		
	Offset Pressure Data	Min. P _{opt} , P _A < F	O _B	D _{off}	672	819	966	Count	*2,3
B	Balanced Pressure Data	$P_A = P_B$		D _{bal}	8045	8192	8339		*4
B	Full Scale Pressure Data	Max. P _{opt} , P _A >	Max. P_{opt} , $P_A > P_B$		15418	15565	15712	Count	*5
	Span Pressure Data	Min. to Max. Po	opt	SD	-	14746	-	Count	*6
	Accuracy	in Compensate	in Compensated Temperature		-1.0	-	+1.0	%FS	*7, 8, 9
	Compensated Temperature				-5	-	+65	°C	*10
		VDD = 5 Vdc VDD = 3.3, 3.0 Vdc			-	-	4.5	A .l.	*44
	Supply Current			l _c	-	-	3.5	mAdc	*11
	Initializing Time	After VDD reac	hing 2.7 V	t _{init}	-	-	10	msec.	*12
	Sampling Frequency			f_{smp}	-	2	-	kHz	*13
	Response Time	for reference		t _r	-	1	-	msec.	*14
			-5°C		-	461	-		
	Temperature Data	for reference	+25°C	D _{tmp}	-	768	-	Count	*15
			+65°C		-	1177	-		
	Dielectric Strength				-	-	1	mA	*16
	Insulation Resistance				100	-	-	МΩ	*17

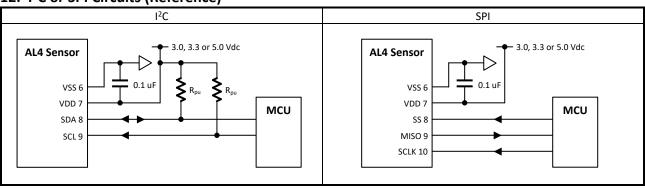

Notes:

- *1) Supply voltage (VDD) should be constant.
- *2) Offset pressure data (Doff) is defined as the pressure data at minimum Popt.
- *3) Balanced pressure data (D_{bal}) is defined as the pressure to Port A equals that to Port B.
- *4) Balanced pressure data error is calibration error of Balanced pressure data (Dbal) at production. It does not include Long term drift. It would be suggested that applications have Auto-zeroing function.
- *5) Full scale pressure data (Dfs) is defined as the pressure data at maximum Popt.
- *6) Span pressure data (SD) is defined as the pressure data difference between Offset pressure data (D_{off}) and Full scale pressure data (D_{fs}).
- *7) The unit of Accuracy "%FS" is defined as a percent error by Span pressure data (SD).
- ⚠ *8) Accuracy (Error) is the specs of process inspection at Fujikura. It consists of the following:
 - Non-linearity
 - · Temperature errors over the temperature range -5 to 65°C
 - · Pressure hysteresis
 - · Calibration errors of sensitivity and offset
 - *9) The following errors are NOT included to Accuracy (Error):
 - Offset change due to port orientation sensitivity, soldering thermal stress and assembling mechanical stress
 - · Offset drift over time
 - *10) Please also refer to Chapter 18 Transfer Function.
 - *11) Lower power mode is available for a modification product. Please ask Fujikura.
 - *12) Initializing process starts when VDD reached 2.7 V. After initializing process, ready to data read. See the figure below.
 - *13) Sampling frequency is time to data ready.
 - *14) Response time (t_r) is defined as the time for the change in the pressure data from 10% to 90% or from 90% to10% of its final value when the input pressure makes a step change. See the figure below.
 - *15) Temperature Data (D_{tmp}) is for reference.
 - *16) Dielectric strength is defined as the leakage current between all pins and the package with AC 500 V, 1 minute.
 - *17) Insulation resistance is defined as the resistance value between all pins and the package with DC 500 V.

Initializing Time

Response Time

11. Electrical Characteristics for I²C or SPI Interface

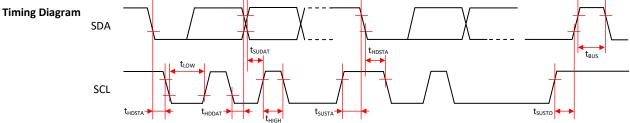

Communication interface (communication mode) of I^2C or SPI is factory setting. User cannot change communication mode like from I^2C to SPI or from SPI to I^2C .

Ambient temperature T_a =25°C

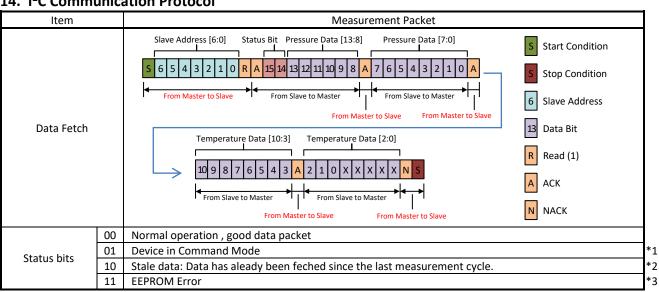
lha	_	Condition					
Item				Min.	Тур.	Max.	Unit
Interface					I ² C or SPI		
		AL40DB		0	-	1	V
Input Low Voltage	Sensor Code	AL41DB	V_{IL}	0	-	0.66	V
		AL42DB		0	-	0.6	V
		AL40DB		4	-	5	V
Input High Voltage	Sensor Code	AL41DB	V_{IH}	2.64	-	3.3	V
		AL42DB		2.4	-	3	V
		AL40DB		-	-	0.5	V
Output Low Voltage	Sensor Code	AL41DB	V_{OL}	-	-	0.33	V
		AL42DB		-	-	0.3	V

Notes:

12. I²C or SPI Circuits (Reference)


^{*1)} I²C is a trademark of NXP Semiconductors.

13. I²C Digital Interface


Itam	Condition	Cumbal		l locia			
Item	Condition	Symbol	Min.	Тур.	Max.	Unit	
SCL clock frequency		f _{SCL}	100	-	400	kHz	
Start condition hold time rela	tive to SCL edge	t _{HDSTA}	0.1	-	-	μsec.	
Minimum SCL clock low width	1	t _{LOW}	0.6	-	-	μsec.	*2
Minimum SCL clock high widt	h	t _{HIGH}	0.6	-	-	μsec.	*2
Start condition setup time relative to SCL edge			0.1	-	-	μsec.	
Data hold time on SDA relativ	e to SCL edge	t _{HDDAT}	0	-	-	μsec.	
Data setup time on SDA relati	ve to SCL edge	t _{SUDAT}	0.1	-	-	μsec.	
Stop condition setup time on	SCL	t _{susto}	0.1	-	-	μsec.	
Bus free time between stop condition and start condition		t _{BUS}	2	-	-	μsec.	
Load Capacitance	Pin8 SDA, 400kHz	C_{max}	-	-	200	pF	
Pull-up Resistor	Pin8 SDA, Pin9 SCL	R _{pu}	1	-	-	kΩ	
Slave address 7 bit, Factory setting				0x28 to 0x78	3		*3

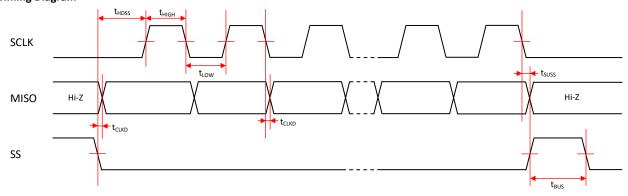
Notes:

- *1) There are three differences in this device protocol compared with the original I²C™ protocol:
 - Sending a start-stop condition without any transitions on the CLK line (no clock pulses in between) creates a
 communication error for the next communication, even if the next start condition is correct and the clock pulse is
 applied. An additional start condition must be sent, which results in restoration of proper communication.
 - The restart condition a falling SDA edge during data transmission when the CLK clock line is still high creates the same situation. The next communication fails, and an additional start condition must be sent for correct communication.
 - A falling SDA edge is not allowed between the start condition and the first rising SCL edge. If using an I2C™ address with the first bit 0, SDA must be held low from the start condition through the first bit.
- *2) Combined low and high widths must equal or exceed minimum SCLK period.
- *3) Slave address is factory setting. Customer cannot change the slave address.

14. I²C Communication Protocol

Notes:

- *1) If the status bits are 01, the device must be re-started to turn power supply off and on again.
- *2) If a data fetch is performed before or during the first measurement after power-on reset, then "stale" will be returned, but this data is actually invalid because the first measurement has not been completed.
- *3) If the status bits are 11, do not use the device anymore.

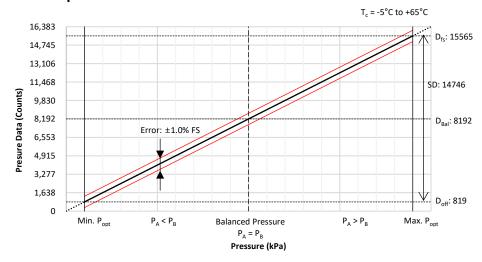

15. SPI Digital Interface

This mode is half duplex (read-only).

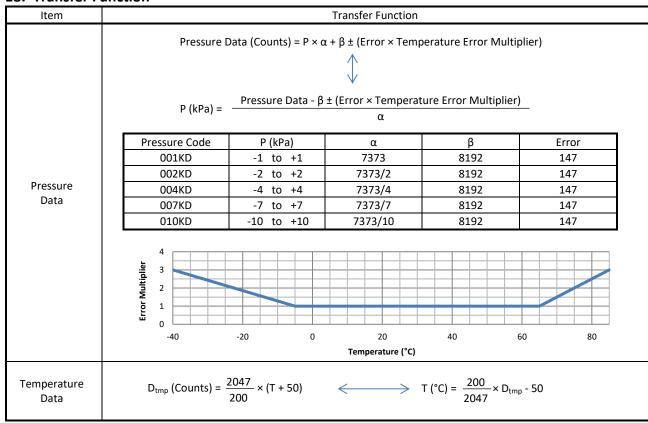
ltem	Condition	Symbol		Unit			
item	Condition	Зуппоот	Min.	Тур.	Max.	Ullit	
SCLK clock frequency	4 MHz clock	f_{SCL}	50	1	800	kHz	
SS drop to first clock edge		t _{HDSS}	2.5	-	-	μsec.	
Minimum SCLK clock low width		t_{Low}	0.6	1	-	μsec.	*1
Minimum SCLK clock high width		t _{HIGH}	0.6	-	-	μsec.	*1
Clock edge to data transition		t _{CLKD}	0	-	0.1	μsec.	
Rise of SS relative to last clock edge		t_{SUSS}	0.1	-	-	μsec.	
Buss free time between rise and fall of SS		t _{BUS}	2	-	-	μsec.	

Notes:

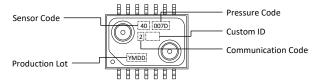
Timing Diagram


16. SPI Communication Protocol

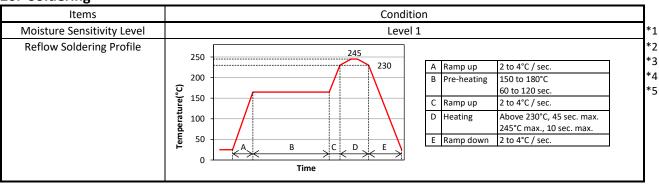
The master should sample MISO on the rise of SCLK.


Item	Measurement Packet
Data Fetch	SCLK MISO Hi-Z SS Packet = [{S(1:0),B(13:8)},{B(7:0)},{T(10:3)},{T(2:0),xxxxx}] S(1:0) = Status bits of packet (Normal, Command, Busy, EEPROM Error) P(13:8) = Upper 6 bits of 14-bit pressure data P(7:0) = Lower 8 bits of 14-bit pressure data T(10:3) = Corrected temperature data (if application does not require corrected temperature data, terminate read only.) T(2:0),xxxxx = Remaining bits of corrected temperature data for full 11-bit resolution Hi-Z = High impedance

^{*1)} Combined low and high widths must equal or exceed minimum SCLK period.


17. Output versus Input Pressure

18. Transfer Function


19. Device Marking

Production Lot *1		Sensor Code		Pressure Code		Communicati	Custom ID	
	Marking		Marking		Marking		Marking	Marking
Y: Last digit of year	0 to 9	AL40DB	40	001KD	001D	2	2	If applicable
M: Month Jan. to Sep.	1 to 9	AL41DB	41	002KD	002D	3	3	
October	Х	AL42DB	42	004KD	004D	4	4	
November	Υ			007KD	007D	5	5	
December	Z			010KD	010D	6	6	
DD: Date	00 to 31					7	7	
						S	S	

Notes:

20. Soldering

Notes:

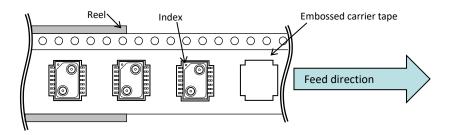
- *1) This device is classified as moisture sensitivity level (MSL) 1 that is defined in Jedec standard J-STD-20. Floor life time is unlimited. However, the plating of pins is silver (Ag) that could be discolored to black or brown by sulfur in the environment. Discoloration of pins could impact soldering reliability. The device should be sealed in the embossed carrier tape before soldering.
- *2) NEVER wash the device with any washing liquid. NEVER wash the device with any ultrasonic washing machine.
- *3) Do not put the solder and flux on the device's package.
- *4) Temperature means Surface temperature of the device's package.
- *5) Do not reflow more than twice.

21. Dimensions and Weights

Refer to the following drawing as attached. 3D CAD model is available. Please ask Fujikura distributor.

Sensor Code	Dimension Drawing	Weight
AL4xDB	9-772-006	approx. 0.55 grams

^{*1)} Production Lot is 10 year cycle.

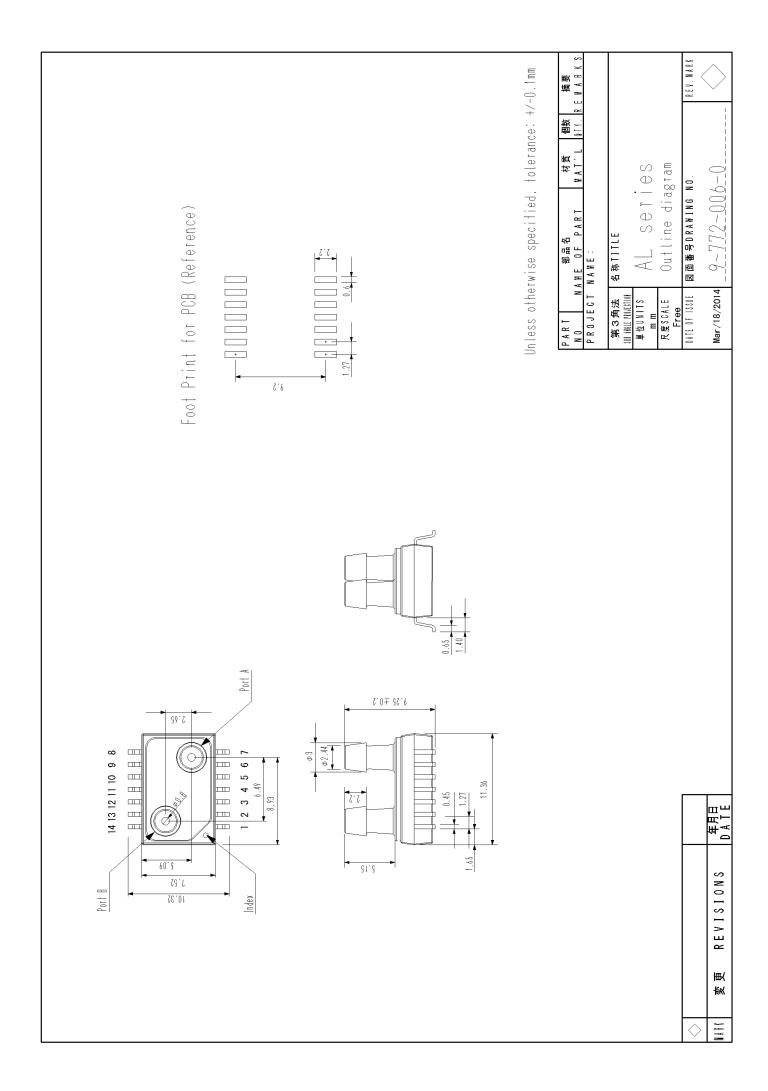

22. Ordering Information

Model	Package	Supply Voltage	Packing	Ordering Device Number	Qty./I	Packing
		5.0 Vdc Tape & Reel AL40DB-[Press		AL40DB-[Pressure Code]-[Com Code]-TP	350	Pcs/Reel
AL4	SMD	3.3 Vdc	Tape & Reel	AL41DB-[Pressure Code]-[Com Code]-TP	350	Pcs/Reel
		3.0 Vdc	Tape & Reel	AL42DB-[Pressure Code]-[Com Code]-TP	350	Pcs/Reel

Pressure Range	Pressure Code			Communication Code
-1 kPa to +1 kPa	001KD		0x28	2
-2 kPa to +2 kPa	002KD	120	0x38	3
-4 kPa to +4 kPa	004KD	I ² C	0x48	4
-7 kPa to +7 kPa	007KD	Slave address	0x58	5
-10 kPa to +10 kPa	010KD	address	0x68	6
_			0x78	7
		SP		S

I2C or SPI is factory setting.
User cannot change the communication mode.

23. Tape & Reel Information


24. Handling Notes

Plating of pins is silver (Ag). Silver has physical property that is discolored to black or brown by sulfur. There are notes for handling as below:

- To prevent discoloration of pins, please keep the devices sealed in static shielding bags before soldering.
- Do not solder the devices that have discolored pins.
- After soldering, pins would be discolored in black or brown in atmosphere. However it does not impact reliability of the device.

25. Notes

- Fujikura reserves all rights.
- This document is subject to change without notice.
- · Limitation, usage, environment, standard warranty and so on are listed on Fujikura web site.
- Please refer to the latest specifications.

