JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD.

AD-CJU04N65 Plastic-Encapsulated MOSFET

AD-CJU04N65 N-Channel Power MOSFET

V _{(BR)DSS}	R _{DS(on)} , MAX	ID
650V	3.0Ω @ 10V	4A

DESCRIPTION

The AD-CJU04N65 is an N-channel mode power MOSFET using advanced technology to provide customers with planar stripe. This technology specializes in allowing a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode. The AD-CJU04N65 is universally applied in high efficiency switch mode power supply.

TO-252-2L	
1. GATE 2. DRAIN 3. SOURCE	

FEATURES

- High switching speed
- 100% avalanche tested
- Excellent package for good heat dissipation
- AEC-Q101 qualified

APPLICATIONS

- Power switching application
- DC/DC converters

MARKING

Ū04N65 = Part No. XXXX = Date code

EQUIVALENT CIRCUIT

MAXIMUM RATINGS (T_j = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-source voltage	V _{DS}	650	V
Gate-source voltage	V _{GS}	±30	V
Continuous drain current	I _D ¹⁾	4	А
Pulsed drain current	I _{DM} ²⁾	16	A
Single pulsed avalanche energy	Eas 3)	280	mJ
Maximum power dissipation	P _D ¹⁾	48	W
Thermal resistance from junction to case	R _{0JC} ¹⁾	2.6	°C/W
Thermal resistance from junction to ambient	R _{0JA} ⁴⁾	100	°C/W
Operating junction and storage temperature range	T _j , T _{stg}	-55 ~ 150	°C

ELECTRICAL CHARACTERISTICS (T_j = 25°C unless otherwise specified)

Parameter	Symbol	Test condition		Тур	Max	Unit
Static characteristics						
Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D = 250µA	650	-	-	V
Drain-source diode forward voltage	V_{SD}	$V_{GS} = 0V, I_{S} = 4.0A$	-	-	1.5	v
Zero gate voltage drain current	I _{DSS}	$V_{DS} = 600 V, V_{GS} = 0 V$	-	-	25	μA
Gate-body leakage current	I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$	-	-	±100	nA
Gate threshold voltage 5)	V _{GS(th)}	V_{DS} = V_{GS} , I_D = 250 μ A	2	-	4	V
Drain-source on-state resistance ⁵⁾	R _{DS(on)}	V _{GS} = 10V, I _D = 2A	-	2.3	3	Ω
Dynamic characteristics ^{5) 6)}						
Total gate charge	Qg		-	5	10	
Gate-source charge	Q _{gs}	V _{DS} = 480V, V _{GS} =10V, I _D = 4A	-	2.7	-	nC
Gate-drain charge	Q_{gd}		-	2	-	
Input capacitance	Ciss		-	-	760	
Output capacitance	Coss	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz	-	-	180	pF
Reverse transfer capacitance	Crss		-	-	20	
Switching parameters ^{5) 6)}						
Turn-on delay time	t _{d(on)}		-	-	20	
Turn-on rise time	tr	V_{DD} = 300V, V_{GS} = 10V, R_L = 9.1 Ω ,	-	-	10	
Turn-off delay time	t _{d(off)}	I _D = 4.0A	-	-	40	ns
Turn-off fall time	t _f		-	-	20	

1) Maximum allowed temperature T_j = 25°C.

2) Pulse width $\leq 10\mu_s$, duty cycle $\leq 1\%$. 3) Test condition: $V_{0D} = 50V$, $V_{0S} = 10V$, L = 10mH, $R_G = 25\Omega$, starting at $T_J = 25^{\circ}C$. 4) Measured with the device mounted on 1 inch² FR-4 board with 2oz. copper, in a still air environment with $T_a = 25^{\circ}C$. 5) Pulse test: Pulse width $\leq 300\mu_s$, duty cycle $\leq 2\%$. 6) Guaranteed by design, not subject to production.

Typical Characteristics

TO-252-2L PACKAGE OUTLINE DIMENSIONS

Cumbel	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	2.200	2.400	0.087	0.094
A1	0.000	0.127	0.000	0.005
b	0.635	0.770	0.025	0.030
С	0.460	0.580	0.018	0.023
D	6.500	6.700	0.256	0.264
D1	5.100	5.460	0.201	0.215
D2	4.830	REF.	0.190	REF.
E	6.000	6.200	0.236	0.244
е	2.186	2.386	0.086	0.094
L	9.712	10.312	0.382	0.406
L1	2.900	REF.	0.114	REF.
L2	1.400	1.700	0.055	0.067
L3	1.600	REF.	0.063	REF.
L4	0.600	1.000	0.024	0.039
Φ	1.100	1.300	0.043	0.051
θ	0°	8°	0°	8°
h	0.000	0.300	0.000	0.012
V	5.250	REF.	0.207	REF.

TO-252-2L SUGGESTED PAD LAYOUT

Note:

- 1. Controlling dimension in millimeters.
- 2. General tolerance: ±0.05mm.
- 3. The pad layout is for reference purpose only.

TO-252-2L TAPE AND REEL

TO-252 Embossed Carrier Tape

Packaging Description: TO-252 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 25,00 units per 13" or 33.0 cm diameter reel. The reels are clear in color and is made of polystyrene plastic (anti-static coated).

	Dimensions are in millimeter									
Pkg type A B C d E F P0 P P1 W							w			
TO-252	6.90	10.50	2.70	Ø1.55	1.75	7.50	4.00	8.00	2.00	16.00

TO-252 Tape Leader and Trailer

Trailer Tape 50±1 Empty Pocke	ts Compon	ents - +	Leader Tape 50±1 Empty Pockets		

REEL	Reel Size	Box	Box Size(mm)	Carton	Carton Size(mm)	G.W.(kg)
2,500 pcs	13inch	2,500 pcs	340×336×29	25,000 pcs	353×346×365	

JIANGSU CHANGJING ELECTRONICS TECHNOLOGY CO., LTD. 13th Floor, C Block, Tengfei Building, Yan Chuang Yuan, Nanjing Jiangbei New Area, China

LEGAL DISCLAIMER

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples, hints or typical values stated herein and/or any information regarding the application of the device, JSCJ hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of JSCJ in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

INFORMATION

For further information on technology, delivery terms and conditions as well as prices, please contact your nearest JSCJ office (<u>www.jscj-elec.com</u>).

WARNINGS

Due to technical requirements, products may contain dangerous substances. For information on the types in question, please contact your nearest JSCJ office.

Except as otherwise explicitly approved by JSCJ in a written document signed by authorized representatives of JSCJ, JSCJ's products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.